

Future Evolution of Hydrological Processes in Southern Ontario Example of the Big Creek Watershed

Olivier Champagne, Altaf Arain, Paulin Coulibaly McMaster University, Hamilton, ON

Montréal, June 27th, 2017

Introduction

- Focus on Southern Ontario:
- ✓ High occurrence of flood disasters
- Highly populated and industrialized urban area surrounded by agricultural lands
- ✓ Projected increase of temperatures and rainfall extremes in the region
- Past and future evolution of streamflow well studied:
- ✓ Shift toward the early winter in many watersheds
- Areas of improvement:
- × Difficult comparisons between watersheds (Different hydrological models)
- × Processes generating high flows barely studied
- × Uncertainties of the method not always assessed

Main Objectives

(1) Evaluate the future evolution of peak flows in Southern Ontario using a coupled hydrological model (GSFLOW) in three watersheds:

(i) Urban (ii) Semi-urban (iii) Rural

(2) Understand the **hydro-meteorological processes** associated with the extreme events and peak flows

(3) Assess the **uncertainties** associated with the use of **global climate models** projections

Methods

- GSFLOW coupled hydrological model:
- PRMS Surface conceptual semi-distributed model
- > MODFLOW: 3 dimensional groundwater model
- **Calibration** of model parameters thanks to past observations <u>Input:</u> Temperatures, Precipitations <u>Observed variables:</u> Solar Radiation, Streamflow
- Simulation of the future streamflow thanks to the calibrated set of parameters
- Input: Downscaled **Temperatures and Precipitations** from **11 CMIP5** models with **RCP 4.5** and **8.5** scenarios.

Study Area

Big Creek Watershed Characteristics

Land Use

Geology

Big Creek River Simulations: GS FLOW Input Data

- Delineation of hydrological response units (HRU) and construction of the 3D grid (21 Rows / 14 Columns / 2 Layers)
- Calibration: Trial and error approach
- ✓ Initialization: 1986 1987
- ✓ Calibration: 1987 2007
- ✓ Validation: 2008 2013

- Past: Temperatures and Precipitations in Delhi and other stations
- Future: **Bias Correction of CMIP5 datasets** (Closest point from Delhi)

Big Creek River HRUs and Grid

Results: Modeled and Observed Streamflow

Validation of Evapotranspiration and Soil Moisture

GCM Simulated Future Climate Data

Simulation of Peak Flows

What is the contribution of temperatures and precipitations in this peak flow shift?

Simulation of Rainfall and Snowmelt

- Increase in winter rainfall
- Snowmelt peak period shifted from March to February.
- RCP 8.5 scenario predicted higher increase in winter rainfall and larger decrease in snowmelt
- Larger uncertainty in rainfall in summer for RCP 8.5 scenario.

Streamflow Simulations After Removing Temperature Trends

- Increase of winter streamflow (December-February) due to precipitation increase.
- Decrease of streamflow in March due to increase of temperatures (Less snowmelt)
- In summer no clear result: increase of precipitations ≠ increase of temperatures (ETP)
- RCP 8.5 scenario enhanced the role of temperature (less snowmelt in winter, more ETP in summer) but increase in uncertainties

Discussion: Cascade of Uncertainty in Simulations

The parametrization of the hydrological and climate models should be improved

Conclusions

- GSFLOW model is able to simulate streamflow reasonably well in **Big Creek catchment**
- The **projected streamflow using input data from** 11 global climate models and 2 scenarios (**RCP 4.5 and 8.5)** show:
 - ✓ A shift in extreme hydrological events towards early winter due to increase in temperature and precipitation
- Uncertainties from different GCM mainly in summer and with RCP 8.5
- This study can help society prepare for the future evolution of peak flows

Future work

- Improve the calibration process by using local data availability (evapotranspiration, soil moisture etc.) and a highflow based likelihood function.
- Use a finer grid in MODFLOW (200m X 200m)
- Create a seasonal extreme indice (Rainfall in winter) to understand the evolution of high flow generated by rainstorm
- **Compare** the results between **different watersheds** in the region.

Thank You

Questions?

Acknowledgments:

Floodnet NSERC Network Long Point Region Conservation Authority Toronto and Region Conservation Authority Environment Canada Province of Ontario