

Update on projects 2-2 and 2-4

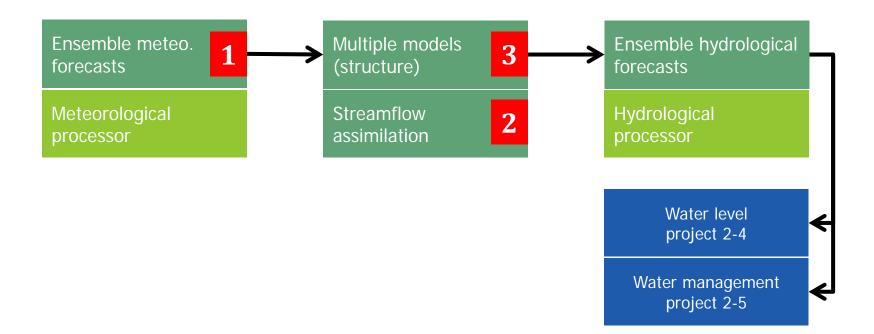
Achievements and ongoing works

F. Anctil and collaborators Montréal – June 27, 2017

Project 2-2

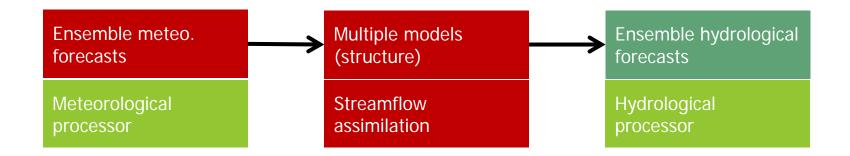
Objective

 Compare the performance and reliability of many probabilistic implementations of operational ensemble streamflow forecasting based on multiple hydrological models



Project 2-2

- Hypotheses
 - There are three main sources of uncertainty
 - Meteorological forcing
 - Initial conditions of the watershed
 - Structure of the hydrological model
 - Accounting for these three sources of uncertainty may eliminate (or at least lessen) the need of hydrological post-processing



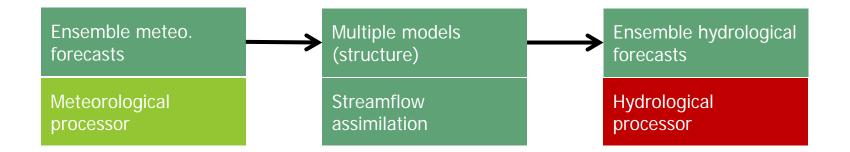
H-EPS

PhD – Antoine Thiboult

Thiboult A, Anctil F, Boucher MA. 2016. Accounting for three sources of uncertainty in ensemble hydrological forecasting. Hydrology and Earth System Sciences 20, 1809-1825.

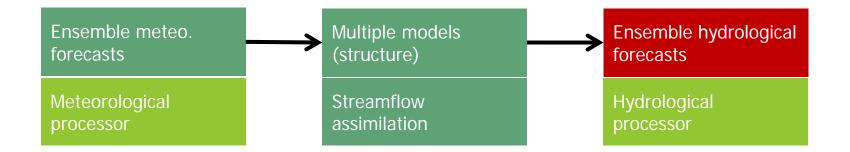
Thiboult A, Anctil F, Ramos MH. 2017. How does the quantification of uncertainties affects the quality and value of flood early warning systems? Journal of Hydrology 551, 365-373.

PDF – Mabrouk Abaza

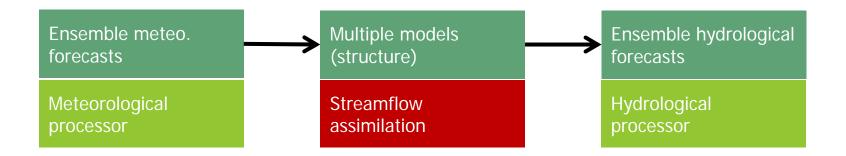


Abaza M, Anctil F, <u>Fortin V</u>, <u>Perreault L</u>. 2017. Hydrological evaluation of the Canadian meteorological ensemble <u>reforecast</u> product. Atmosphere-Ocean. In press.

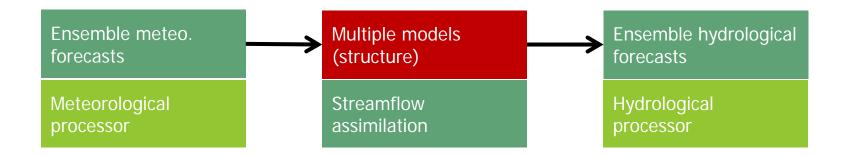
Abaza M, Anctil F, Fortin V, Perreault L. An experiment on the incidence of meteorological and hydrological processors on the resolution and reliability of hydrological ensemble forecasts. Journal of Hydrology. Submitted.


PhD – Jing Xu

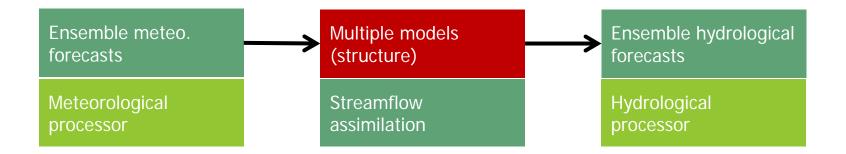
Will present next


MSc – Emixi Valdez

Produce ensembles for project 2-5 LWCB


PhD – Philippe Richard

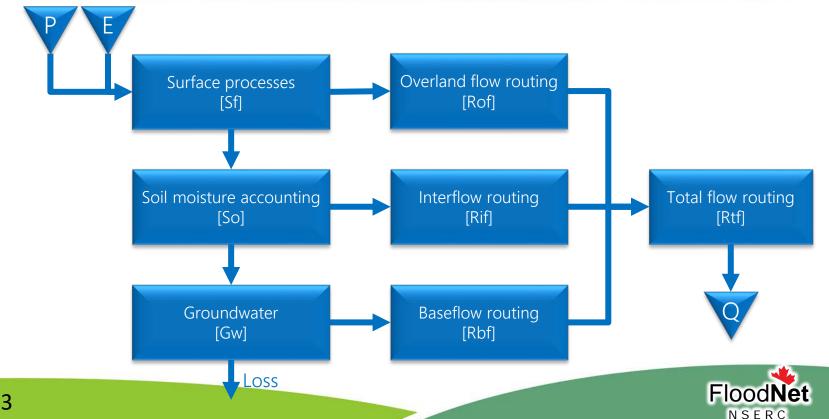
Role of the forecaster → in, out, or over the loop MDDELCC


MSc - Charles Malenfant

Malenfant C, Seiller G, Anctil F. Sensitivity analysis of a hydrologic multimodel. In prep.

PDF – Grégory Seiller

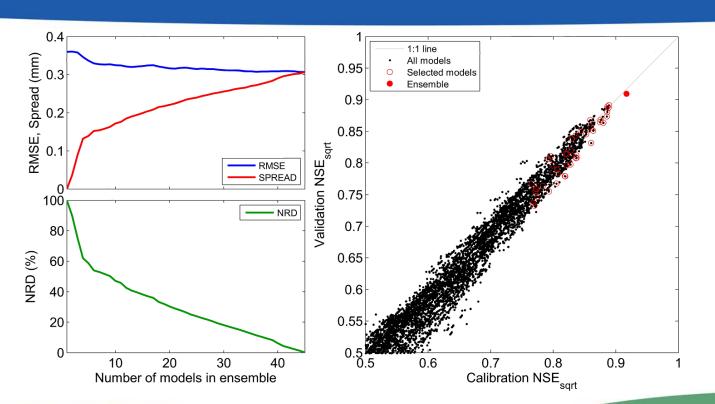
Seiller G, Anctil F, Roy R. 2017. Design and experimentation of an empirical multistructure framework for accurate, sharp and reliable hydrological ensembles. Journal of Hydrology. Revised.



12 dissimilar lumped models

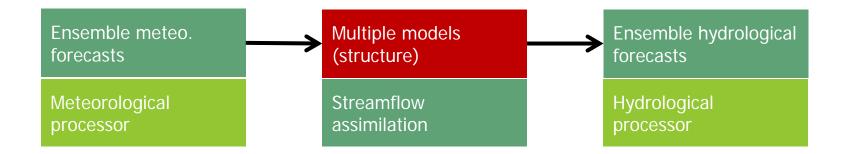
Name	Free parameters	Storages	Derived from	
Α	6	3	BUCKET (Thornthwaite and Mather, 1955)	
В	6	3	CREC (Cormary and Guilbot, 1973)	
С	6	3	GARDENIA (Thiery, 1982)	
D	4	2	GR4J (Perrin et al., 2003)	
Е	7	4	MARTINE (Mazenc et al., 1984)	
F	7	2	MOHYSE (Fortin and Turcotte, 2006)	
G	6	4	MORDOR (Garçon, 1999)	
Н	9	5	SACRAMENTO (Burnash et al., 1973)	
1	8	3	SIMHYD (Chiew et al., 2002)	
J	7	4	TANK (Sugarawa, 1979)	
K	8	3	WAGENINGEN (Warmerdam et al., 1997)	
L	8	4	XINANJIANG (Zhao et al., 1980)	

Isolate their functional components


39 functional components

Name	Sf	So	Gw	Rof	Rif	Rbf	Rtf
Α							
Н							
E							
В							
С							
J							
K							
L							
D							
F							
G							
ı							
	11+0	12	6+0	2+0	2+0	1+0	5

108 852 potential models


Child selection process

1 446 potential models

PDF – Carine Poncelet

Explore the incidence of the multiple model selection 3h time step

Project 2-4

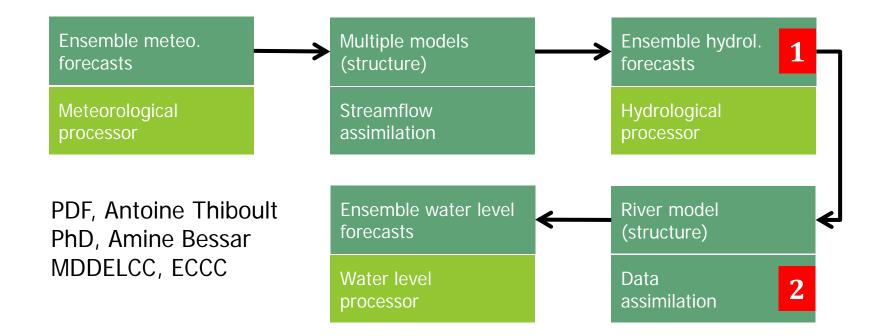
Objective

 Explore flood warning based on a hydraulic model with assimilation and hydrological ensemble forecasts, extending the hydrological ensemble prediction system tested in Project 2-2, with an additional vertical component

H-EPS

Ensemble meteo.
forecasts

Multiple models
(structure)


Ensemble hydrol.
forecasts

Hydrological
processor

Hydrological
processor

WL-EPS

Update on projects 2-2 and 2-4

Thank you