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What is Data Assimilation ?

� Use observations to improve simulation

� How ?
� Kalman Filter
� Variational method
� Particle Filter
� ...
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Particle Filter

� In a perfect world
� Identify most appropriate state variable values
� Improve initial conditions
� Better simulation & forecast

� But life is not perfect...
� Bias in the forcing
� Error in the model structure

⇒ Filter may fail
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Error in model structure

Multimodel approach
� No model is always better than others
� Cover different conceptualization
� Compensation of models errors
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A multimodel data assimilation framework

Traditional Particle Filter Multimodel Particle Filter

One model at a time Update all models together

Update model invididually
Make models cooperate
during the assimilation

—
Foster compensation of
models errors

—
Control multimodel predictive
function

Require only one model
Require a large number
of models (6 20)
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Experimental set-up

� Comparison between individual and collective model updating

� Catchments
� 6 catchments in the Province of Québec
� Snow accumulation & spring freshet
� 9-year period

� Assessment of accuracy and reliability
� Nash-Sutcliffe Efficiency (NSE)
� Root mean square error (RMSE)
� Continuous ranked probability score (CRPS)
� Normalized root mean square error ratio (NRR)
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Preliminary results

Individual Collective
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� ↗ Accuracy
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� ' Reliability
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Conclusion

A multimodel data assimilation framework

� Based on the particle filter

� Update models jointly in a cooperative mode

� Possible gain in accuracy and reliability

... Work in progress
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1. Force model with
perturbed inputs

2. Compute particle weights
based on their likelihood

3. Resample

4. Iterate
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1. Force models with perturbed inputs

2. Choose particles to create a predictive
PDF that is similar to the PDF of the
observation

3. Compute statistical distance between
predictive PDF and PDF of the
observation (weights)

4. Resample particles

5. Iterate models
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� Foster models error
compensation

� Easier to explore
predictive space

� May respect more model
dynamic
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