A multimodel data assimilation framework for hydrology

Antoine Thiboult, François Anctil

Université Laval

June 27th 2017

What is Data Assimilation ?

Use observations to improve simulation

What is Data Assimilation ?

- Use observations to improve simulation
- How ?
 - Kalman Filter
 - Variational method
 - □ Particle Filter
 - □ ...

Particle Filter

In a perfect world

- $\hfill\square$ Identify most appropriate state variable values
- Improve initial conditions
- $\hfill\square$ Better simulation & forecast

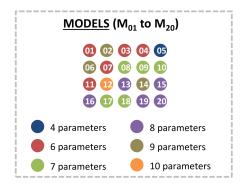
Particle Filter

In a perfect world

- Identify most appropriate state variable values
- Improve initial conditions
- $\hfill\square$ Better simulation & forecast
- But life is not perfect...
 - □ Bias in the forcing
 - □ Error in the model structure
 - \Rightarrow Filter may fail

Error in model structure

Error in model structure


Multimodel approach

- No model is always better than others
- Cover different conceptualization
- Compensation of models errors

Error in model structure

Multimodel approach

- No model is always better than others
- Cover different conceptualization
- Compensation of models errors

Traditional Particle Filter Multimodel Particle Filter

Traditional Particle Filter Multimodel Particle Filter

One model at a time

Update all models together

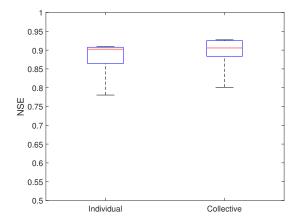
Traditional Particle FilterMultimodel Particle FilterOne model at a timeUpdate all models togetherUpdate model invididuallyMake models cooperate
during the assimilation

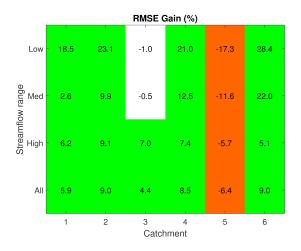
Traditional Particle Filter Multimodel Particle Filter One model at a time Update all models together Make models cooperate Update model invididually during the assimilation Foster compensation of models errors Control multimodel predictive function

5 of 8

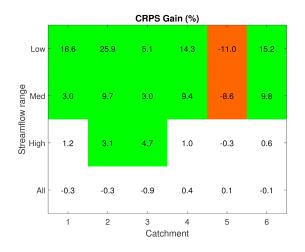
Traditional Particle Filter Multimodel Particle Filter One model at a time Update all models together Make models cooperate Update model invididually during the assimilation Foster compensation of models errors Control multimodel predictive function Require a large number Require only one model of models (≤ 20)

Experimental set-up

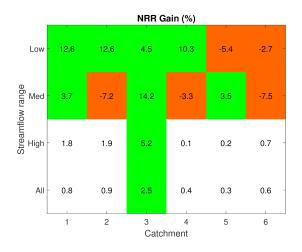

Comparison between individual and collective model updating


Experimental set-up

- Comparison between individual and collective model updating
- Catchments
 - □ 6 catchments in the Province of Québec
 - $\hfill\square$ Snow accumulation & spring freshet
 - □ 9-year period

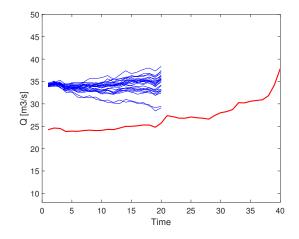

Experimental set-up

- Comparison between individual and collective model updating
- Catchments
 - □ 6 catchments in the Province of Québec
 - $\hfill\square$ Snow accumulation & spring freshet
 - □ 9-year period
- Assessment of accuracy and reliability
 - Nash-Sutcliffe Efficiency (NSE)
 - □ Root mean square error (RMSE)
 - □ Continuous ranked probability score (CRPS)
 - □ Normalized root mean square error ratio (NRR)

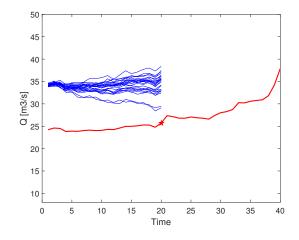


• \nearrow Resolution

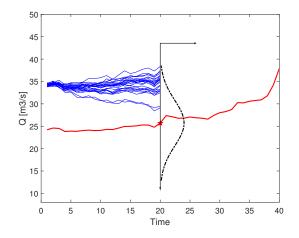
- *∧* Resolution
- $\blacksquare \simeq \mathsf{Reliability}$

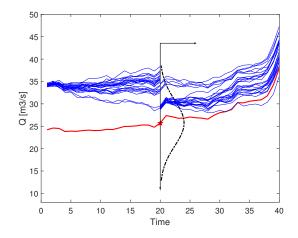

Conclusion

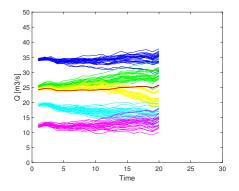
A multimodel data assimilation framework

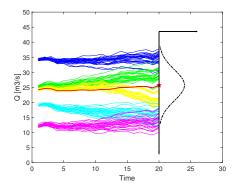

- Based on the particle filter
- Update models jointly in a cooperative mode
- Possible gain in accuracy and reliability

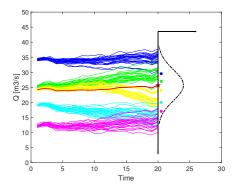
... Work in progress

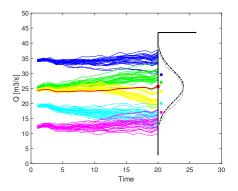

8 of 8

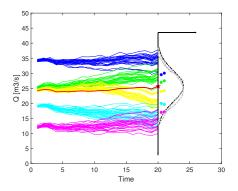

1. Force model with perturbed inputs

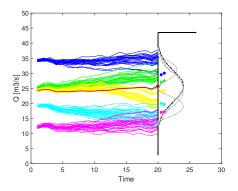

1. Force model with perturbed inputs

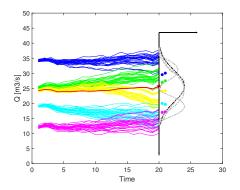

- 1. Force model with perturbed inputs
- 2. Compute particle weights based on their likelihood

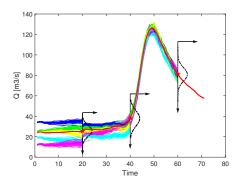

- 1. Force model with perturbed inputs
- 2. Compute particle weights based on their likelihood
- 3. Resample
- 4. Iterate

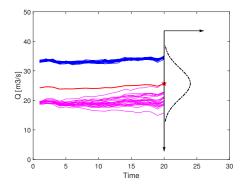

1. Force models with perturbed inputs

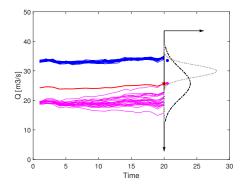

1. Force models with perturbed inputs

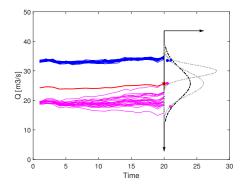

1. Force models with perturbed inputs


- 1. Force models with perturbed inputs
- 2. Choose particles to create a predictive PDF that is similar to the PDF of the observation


- 1. Force models with perturbed inputs
- 2. Choose particles to create a predictive PDF that is similar to the PDF of the observation


- 1. Force models with perturbed inputs
- 2. Choose particles to create a predictive PDF that is similar to the PDF of the observation


- 1. Force models with perturbed inputs
- 2. Choose particles to create a predictive PDF that is similar to the PDF of the observation
- 3. Compute statistical distance between predictive PDF and PDF of the observation (weights)


- 1. Force models with perturbed inputs
- 2. Choose particles to create a predictive PDF that is similar to the PDF of the observation
- Compute statistical distance between predictive PDF and PDF of the observation (weights)
- 4. Resample particles
- 5. Iterate models

- Foster models error compensation
- Easier to explore predictive space
- May respect more model dynamic

- Foster models error compensation
- Easier to explore predictive space
- May respect more model dynamic

- Foster models error compensation
- Easier to explore predictive space
- May respect more model dynamic