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m Use observations to improve simulation




What is Data Assimilation ?

m Use observations to improve simulation

m How ?
O Kalman Filter

O Variational method
O Particle Filter
O
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Particle Filter

® |n a perfect world

O Identify most appropriate state variable values
O Improve initial conditions
O Better simulation & forecast

m But life is not perfect...
O Bias in the forcing
O Error in the model structure

= Filter may fail
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Multimodel approach

® No model is always better than others
m Cover different conceptualization

m Compensation of models errors
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A multimodel data assimilation framework

Traditional Particle Filter Multimodel Particle Filter




A multimodel data assimilation framework

Traditional Particle Filter Multimodel Particle Filter

One model at a time Update all models together




A multimodel data assimilation framework

Traditional Particle Filter Multimodel Particle Filter

One model at a time Update all models together

Make models cooperate
during the assimilation

Update model invididually




A multimodel data assimilation framework

Traditional Particle Filter Multimodel Particle Filter

One model at a time Update all models together

Make models cooperate

Update model invididually during the assimilation

Foster compensation of
models errors

Control multimodel predictive
function




A multimodel data assimilation framework

Traditional Particle Filter Multimodel Particle Filter

One model at a time Update all models together

Make models cooperate

Update model invididually during the assimilation

Foster compensation of
models errors

Control multimodel predictive
function

Require a large number

Require only one model of models (< 20)
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Experimental set-up

m Comparison between individual and collective model updating
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Experimental set-up

m Comparison between individual and collective model updating
m Catchments

O 6 catchments in the Province of Québec
O Snow accumulation & spring freshet
O 9-year period
m Assessment of accuracy and reliability
0 Nash-Sutcliffe Efficiency (NSE)
0 Root mean square error (RMSE)
0 Continuous ranked probability score (CRPS)
0 Normalized root mean square error ratio (NRR)



Preliminary results
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Preliminary results
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Preliminary results
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Conclusion

A multimodel data assimilation framework
m Based on the particle filter

m Update models jointly in a cooperative mode

® Possible gain in accuracy and reliability

... Work in progress
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1. Force model with
perturbed inputs

2. Compute particle weights
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Force model with
perturbed inputs

Compute particle weights
based on their likelihood

Resample

Iterate




50 ‘ ‘ : : : 1. Force models with perturbed inputs

45t 1

40t 1

351




50 ‘ ‘ : : : 1. Force models with perturbed inputs
45t 1
40 -

351




50 ‘ ‘ : : : 1. Force models with perturbed inputs
45t 1
40 -

351




50 ‘ ‘ : : : 1. Force models with perturbed inputs

451
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2. Choose particles to create a predictive
PDF that is similar to the PDF of the
observation

3. Compute statistical distance between
predictive PDF and PDF of the
observation (weights)

0 5 10 15 20 25 30
Time




1. Force models with perturbed inputs

2. Choose particles to create a predictive
PDF that is similar to the PDF of the
observation

Q [m3/s]

3. Compute statistical distance between
predictive PDF and PDF of the
observation (weights)

4. Resample particles

0 10 20 30 40 50 60 70 80 5 Iterate mode|S
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