g )
Multi-Objective Optimization of Don River PCSWMM/SWMMS5 Model -
o Tara Razavi ; Paulin Coulibaly
J; NSERC Canadian FloodNet , Water Resources and Hydrological Modeling Lab, McMaster University c
N y
Introduction Methodology Results Discussion

The availability of spatially distributed hydrologic data makes
distributed hydrologic models superior tools for
understanding spatially spread hydrologic processes and the
effects of natural and human activities on watersheds [1]. In
operational flood forecasting systems, distributed/semi-
distributed models are increasingly preferred [2]. In this
study a multi-objective genetic algorithm (NSGAII) is adapted
for optimizing the peak flow sensitive parameters of Don
River watershed PCSWMM/SWMM5 model exploiting
observed rainfall data from several storm events and several
stream gauges simultaneously to improve peak flow
estimation.

Objectives

* Considering the spatial variability of discharge and rainfall
data across the Don River watershed in a systematic
automatic model optimization approach

e Assessing the single site versus multi-site model
optimization

* Evaluate the effects of different performance measure
criteria as objective functions in model optimization.
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Automatic Genetic Algorithm single objective SWIVIIVIS\ Table 3 presents the performance of four single-objectiv

model optimization scenarios. In each scenario, on
performance measure criterion of most downstream gaug
(Todmorden) is optimized. The different performance measur
criteria used as objective functions revealed very clos

model optimization with four different objective
functions (average performance for calibration storm

events at watershed outlet) Y

performance. Although, the difference between th
performances is not significant, the first-best performin
[ (o8 ] [ M ][ jeak Flow Error ] criterion , KGE is used as an objective function in the mult
objective optimization framework for the four stream gauges.

Table 3 Mean model performance of single objective optimized
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: : - : measure criteria of watershed outlet
using best identified metric at )

Perf. 1 Perf. 2 Perf.3 Perf.4 Perf. 1 Perf. 2 Perf.3 Perf.4

four stream gauges Todmorden Glenshield
N / — o NsE 090 091 08 09 024 025 023  0.25
o 5 VE 012 009 016 015 028 021 030 0.27
~ Evaluate the performance of ™ S & KGE 087 084 08 08 042 040 034 037
— 35  PpeakE (%) 29.95 33.3 3091 32.83 1140 10.0 12.86 14.91
single and multi-objective — o NSE 037 040 038 041 012 009 011  0.08
R o 5 VE 0.36  0.32 0.34  0.33 015 019 021  0.16
- optimization _J S 2 KGE 044 054 055 051 048 051 049  0.50
= > peakE (%) 12.6 8.7 10.6 9.3 29.5 268  27.7 305
4 )
C h f Knightswood Taylor Creek
ompare the performance _ o NSE 015 020 013 018 -0.73 -0.70 -0.60 -0.46
- / ® 5 VE 035 046 051 049 076 067 071  0.69
5 % KGE 044 049 039 040 -014 -011 -0.10 0.01
— 5  PpeakE (%) 68.75 65.75 66.75 67.75 20.07 19.07 22.07 18.07
Performance measure criteria — < NSE -098 -048 -048 -068 051 059 049 0.54
o 5 VE 139  1.32 1.12 1.52 1.08  1.02 1.14 1.21
. - 3 = KGE 0.02 0.01 -001 -0.01 039 043 041 045
Nash Sutcliffe efficiency (NSE) <5 peakE(%) 27.5 288 299 318 1352 1256 1214 1152
N (Q _ Q . )2 Perf. 1 (Performance measure) : VE Perf. 2:KGE Perf. 3: NSE Perf. 4: Peak Flow Error
NSE = 1 — |25 <0bs  ©sim,
Iiv=1(Qobs — Qobs)z Table 4 Model parameters with total uncertainty range for 475 sub-watersheds along
with single-objective (SO) and multi-objective (MO) optimized parameters’ range
Absolute value of Volume Error (VE) Parameter Unit Initial Range  SO-optimized MO-optimized
N N Watershed Width m 3.65-37395 6.11-2723.19 7.37-1734.03
VE = ‘Zi:l Osim — Ji=1 QObS‘ Percent of Imperviousness %  0.91-152.5 0.92-126.32 1.42-133.29
§V=1 Qobs Manning of pervious area B 0.09-0.8 0.10-.70 0.093-0.69
Pervious area depression storage mm 2.5-229 2.65-20.54 2.5-20.19
Absolute value of Volume Error (VE)
. Hydraulic conductivity mm/hr  0.18-15 0.29-13.10 0.25-14.38
IMaxQobs — MaxQsim|
PeakFlowE = .
MaxQobs In the second experiment, the KGE values for the four stream

gauges are used as objective functions in a multi-objective
optimization framework. The Pareto front solution of multi
KGE=1-yJ(@—-1)%+ (a—1)?+ (b — 1)? objective optimization is displayed in Fig. 2.

Kling—Gupta Efficiency (KGE)
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Multi-objective Optimization PRI g, : optimized models at each stream gauge

NSGA11 [4] is an improved version of NSGA , a non- L = \/\, YL s [
dominated multi-objective genetic algorithm. It R \ :
initials the population based on parameters range : ‘ :

and sorts it based on non-domination. The evolved W
population through subsequent generations will be Fig.4 Simulated and observed peak flow
selected as Pareto front. of calibration and validation events
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