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INTRODUCTION 
• The identification of a statistical distribution to model the frequency of 

occurrence of extreme hydro-meteorological events is important. 
• Two-parameter distributions such as the Generalized Pareto, lognormal, 

gamma or Weibull are useful in fitting datasets in areas such as POT 
extreme value modeling. 

• Three-parameter distributions are also very important, such as for fitting 
annual maximum flood or precipitation series. 
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INTRODUCTION 
• We recommend some methods of discrimination between distributions. 
• The discriminations considered are between: Generalized Pareto (GP) and 

Kappa, Gumbel and some alternative frequency models, and model pairs 
belonging to the group {generalized extreme value (GEV), Pearson type 3 
(P3), generalized logistic (GLO)}. 

• Four discrimination methods are compared by Monte Carlo Simulation in 
terms of their discrimination power and discriminaton bias.  
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DISCRIMINATION STATISTICS 
• Anderson-Darling statistic (AD) 

 
Gives more weight to observations in the tails of the distribution as compared 
to Cramér-von Mises (CvM) and Kolmogorov-Smirnov (KS) statistics. 
• Ratio of maximized likelihood statistic (RML) 
 
 
Most widely investigated method. 
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DISCRIMINATION STATISTICS 
• Transformation to normality followed by the application of Shapiro-Wilk 

GoF statistic (TN.SW) 
 
 
 

• Transformation to normality followed by the application of the Probability 
plot correlation coefficient statistic (TN.PPCC) 
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DISCRIMINATION STATISTICS 
The TN.PPCC statistic is then calculated as follows: 
 
 
 
• Note: When the two frequency models have the same number of unknown 

parameters, applying RML is equivalent to using AIC or BIC. 
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PARAMETER ESTIMATION METHODS 

 In practice, the parameters of the model are unknown, so they need to be 
estimated from the data. 

 
  We considered three parameter estimation methods: 
• Maximum likelihood (ML) 
• Moments (MOM) 
• Probability weighted moments (PWM). 
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DISCRIMINATION STUDIES 

The discriminations considered are between: 
 
 GP and KAP models 
 Gumbel and some alternative frequency models 
 Model pairs belonging to the group {GEV, P3, GLO): 
     GEV vs P3, GEV vs GLO and P3 vs GLO. 
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GP AND KAP 
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Fig. 1   PCS(%) using the AD statistic when GP is the 
true sampled distribution (left) and when KAP is the 
true sampled distribution (right). 
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Fig. 2   PCS (%) using the RML statistic when GP is 
the true sampled distribution (left) and when KAP is 
the true sampled distribution (right). 
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Fig. 3   PCS(%) using the TN.SW statistic when GP is 
the true sampled distribution (left) and when KAP is the 
true sampled distribution (right). 
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GP AND KAP 
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Application with Eight Hydrological Datasets 
 Table 1.   Selecting between the GP and KAP distribution for fitting POT flood data at eight hydrometric stations 

Station n GP Estimates 
(shape; scale) 

KAP Estimates 
(shape; scale) 

AD statistics 
(aGP; aKAP) 

TN.SW statistics 
(sGP; sKAP) 

RML statistics 
(tGP; tKAP) 

              

01AQ001 151 (-0.25; 19.98) (1.95; 18.83) (0.77; 0.23) (0.989; 0.994) 
KAP is selected 

(-1.88; 1.88) 
KAP is selected 

  
01BL002 

  
  

64 (0.01; 13.72) (2.77; 12.89) (1.06; 0.38) (0.969; 0.982) 
KAP is selected 

(-2.06; 2.06) 
KAP is selected 

  
02FC002 159 (0.11; 119.5) (2.80; 110.4) (0.40; 1.08) (0.992; 0.986) 

GP is selected 
(3.03; -3.03) 

GP is selected 
  

01BJ007 52 (-0.04; 430.8) (2.20; 386.9) (0.40; 0.61) (0.983; 0.976) 
GP is selected 

(1.05; -1.05) 
GP is selected 

  
01AF007 47 (0.26; 28.49) (4.00; 27.04) (0.36; 0.24) (0.985; 0.990 ) 

KAP is selected 
  

(-0.33; 0.33) 
KAP is selected 

  
04CA002 32 (0.03; 157.4) (2.74; 156.2) (1.00; 1.51) (0.962; 0.959) 

GP is selected 
(1.00; -1.00) 

GP is selected 
  

02LB008 42 (-0.14; 41) (1.92; 36.63) (0.26; 0.41) (0.977; 0.972) 
GP is selected 

(0.81; -0.81) 
GP is selected 

01BJ003 53 (0.13; 37.28) (3.11; 35.65) (0.27; 0.43) (0.985; 0.987) 
KAP is selected 

  

(0.52; -0.52) 
GP is selected 
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Gumbel and some alternative frequency 
models 
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The alternative models are: 

• The normal:  ( )N μ, σ
• The logistic:  ( )LOG μ, σ
• Two student’s t models to which a location parameter was 

added:   ( )STU μ; ν

• Three models from the 3-parameter gamma family:  ( )GAM3 μ, σ

• Four models from the GEV family:  ( )GEV μ, σ
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Gumbel and some alternative frequency 
models 
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GEV, P3 and GLO 
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Discrimination between GEV and GLO 
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Fig. 5 PCS means for comparing TN.PPCC and TN.SW 
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Fig. 6 PCS absolute difference for comparing TN.PPCC and TN.SW 
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GEV, P3 and GLO 
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Discrimination between P3 and GLO 
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Fig. 7 PCS means for comparing TN.PPCC and TN.SW Fig. 8 PCS absolute difference for comparing TN.PPCC and TN.SW 
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GEV, P3 and GLO 
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Discrimination between GEV and P3 
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Fig. 9 PCS means for comparing TN.PPCC and TN.SW 
Fig. 10 PCS absolute difference for comparing TN.PPCC and TN.SW 
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GEV, P3 and GLO 
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Table 2. Use of the TN.SW statistic s and the TN.PPCC statistic r* to choose between the GEV, GLO and P3 models for the 18 data series 

ID Sample size s.GEV s.P3 s.GLO r*.GEV r*.P3 r*.GLO Chosen.Model 
#1 52 0.98111 0.97965 0.97082 0.99298 0.99238 0.98853 GEV 
#2 37 0.97856 0.97838 0.96846 0.99072 0.99062 0.98689 GEV 
#3 100 0.98867 0.98887 0.98667 0.99488 0.99521 0.99473 P3 
#4 45 0.97498 0.97569 0.96414 0.99007 0.99037 0.98531 P3 
#5 42 0.98632 0.98535 0.98497 0.99129 0.99066 0.99273 * 
#6 32 0.97078 0.97264 0.96182 0.98952 0.99029 0.98557 P3 
#7 43 0.98013 0.98252 0.97143 0.9921 0.99269 0.98851 P3 
#8 96 0.98883 0.98994 0.98219 0.99493 0.99539 0.99234 P3 
#9 78 0.98073 0.9801 0.98983 0.98965 0.9893 0.99549 GLO 

#10 48 0.97653 0.98013 0.96938 0.99057 0.99197 0.98753 P3 

#11 50 0.98684 0.97144 0.98792 0.99247 0.98284 0.99445 GLO 

#12 41 0.9914 0.96647 0.98944 0.99473 0.97907 0.99521 * 

#13 86 0.99426 0.97187 0.99101 0.99709 0.98388 0.99627 GEV 

#14 52 0.98132 NA 0.97269 0.99247 NA 0.98861 GEV 

#15 24 0.95023 0.97909 0.94225 0.97953 0.99168 0.97576 P3 

#16 42 0.97923 0.97641 0.98231 0.98922 0.98713 0.99207 GLO 

#17 20 0.94534 NA 0.93812 0.97752 NA 0.97403 GEV 

#18 40 0.97626 NA 0.97174 0.99075 NA 0.98878 GEV 
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CONCLUSIONS 

• To discriminate between the KAP and GP models, use of the AD statistic 
leads to bias for one model over the other. 

• The use of RML for discriminating between three-parameter distributions 
led to some serious numerical problems. 

• The TN.SW and TN.PPCC statistics proved to be the most advantageous 
among those considered, they would be recommendable in practice for this 
reason. 

• We found a difficulty in discriminating between the P3 and GEV models. 
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