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INTRODUCTION

Microwave remote sensing has become a useful tool for near-
surface soil moisture estimation based on the contrast in
dielectric properties between dry soil and water derived from
backscatter data and microwave emissions. In hydrologic
studies, soil moisture is a critical component as it control the
partitioning between infiltration and run-off and in partitioning
the incoming radiation between latent and sensible heat fluxes
[1]- [4]. The hydrological and climatological process influenced
by soil moisture can impact many environmental phenomena
from extreme events like droughts and flooding to state
patterns such as ecological distribution of homogenous
vegetation zones [2], [5].

Satellite-based microwave remote sensing is the most
promising technique for providing key elements of the near-
surface soil moisture [3], [6]. However, the spatio-temporal
resolution of the recent microwave remote sensing data is a
drawback for near-surface soil moisture retrieval. Their use in
hydrological and agricultural predictions is limited because of
the discrepancy in scale between the satellite products a (> 25
km) and that of hydrological processes (< 1 km) [1]. In the case
of flood prediction and flood forecasting application, this
research focuses on downscaling soil moisture, while also
improving the hydrological simulation accurately.

An adapted method of disaggregation [6] and ensemble
Kalman filter (EnKF) [7], [8] will be applied for soil moisture
downscaling on a field site near Kenaston area, Saskatchewan.
The Moderate Resolution Imaging Spectroradiometer (MODIS),
RADARSAT-2, Soil Moisture Active Passive (SMAP) and Soil
Moisture and Ocean Salinity (SMOS) soil moisture data will be
used in this research.

The field site [51.14N–51.70N; 105.67W–106.79W] is located
south of Saskatoon near Kenaston, Saskatchewan covers an
area of 33 km x 71 km (Fig.1). The site benefits from two
existing soil moisture measurement networks managed by
Environment Canada and the University of Guelph. The study
area was designed to avoid the irrigated fields along
Diefenbaker Lake and South Saskatchewan River to the west
and south, by hummocky uplands to the northeast and by
Diefenbaker Lake and forested areas to the south [9].

KENASTON AREA

Figure 1. Location of Kenaston site [9]

The main objective of this research is downscale soil moisture from SMOS/SMAP at a resolution of 40 km to a
resolution of approximately 1 km to be assimilated into a hydrological model to improve flood forecasting.

A comparison of the different downscaling methods in order to recognize the limit/efficiency of each method in the
context of the studied area and its capability when apply to other area.

OBJECTIVES

1. Disaggregation, DisPATCh method [6]:

(Eq. 1)

SMSMOS: the SMOS soil moisture, 

SEEMODIS :the MODIS-derived Soil Evaporative Efficiency (ratio of actual to potential evaporation),

𝑆𝐸𝐸
𝑀𝑂𝐷𝐼𝑆 40 km its average within a SMOS pixel and 

∂SMmod/∂SEE the partial derivative evaluated at SMOS scale of soil moisture with respect to soil evaporative efficiency.

The disaggregation procedure decouples the soil evaporation from the 0-5 cm soil layer and the vegetation transpiration

from root-zone soil layer by separating MODIS surface temperature into its soil and vegetation components. MODIS

derived soil temperature is then used to estimate soil evaporative efficiency (SEE). SEEMODIS us used as a proxy for surface

SM within the SMOS pixel [6]. Equation 1 shows the link between surface soil moisture and SEE at different scales.

First, the method will be applied to the study area using MODIS data, then RADARSAT-2 data for downscaling.

With the results obtained, the 1st paper will be submitted. 

Time scheduled: data processing and result analysis from Sept. 2016 to Jan. 2017; Paper writing and submission: from Feb. 

to Mar. 2017.

2. Data assimilation: Ensemble Kalman Filter (EnKF) [7],[8]

The soil moisture data assimilation will be carried using EnKF, a Monte-Carlo variant of the Kalman filter. The EnKF is
flexible in its treatment of errors in model dynamics and parameters. It is also very suitable for modestly nonlinear
problems and has become a popular choice for land data assimilation [8]. A model of 1 km will be setup for this system.
3. Comparison: This performance focuses on comparison of the efficiency between two hourly time series dataset SMAP
and SMOS.

In order to do this comparison, the result obtained from 1 (Fig.3) will be integrated into the model 1 km which was setup
in 2 (Fig.3) using the same EnKF.
The results of the 2nd and 3rd applications will be the content for the 2nd paper.
Time scheduled : Setup, testing model and result analysis: from Apr. to Aug. 2017; Paper writing and submission: from
Sept. to Oct. 2017.
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Figure 2. a) The nested study area superimposed on a false colour Landsat image from 1999 (mid IR, near IR, red); 
b) The Kenaston soil moisture mesonet (EC and U of G) near Saskatoon, SK [9]

a) b)

A. Satellite images:
Time series (2015, 2016) of different microwave data will be used:
1. SMAP level 2 soil moisture data product, L-Band: is soil moisture derived from the radiometer brightness temperature
measurements and is posted at 36 km.

SMAP soil moisture calibrated data: all the sites were calibrated using a dry-down method [10] and general calibration
equation [11].
2. SMOS level 2 soil moisture data product: are retrieved on the 15 km ISEA 4H9 (Icosahedral Snyder Equal Area) discrete
global grid (DGG) but reprehensive of nonlinearly weighted ~ 43 km SMOS sampling resolution.
3. MODIS: level 3 global 1 km grid.
4. RADARSAT-2 C-Band: Standard mode, 100 m resolution
B. Kenaston soil moisture mesonet :
The high-density network consists of 37 soil moisture station of Environment Canada and of University of Guelph (Fig. 2).
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Figure 3. Methodology flowchart
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