EXTRACTING PEAKS OVER THRESHOLD (POT)
 DATA FROM DAILY DISCHARGE RECORDS AND PRESENTING THEM IN AN INFORMATIVE
 MANNER

Dieng ${ }^{1}$ B.B., Ashkar ${ }^{1}$ F.
Département de mathématiques et de statistique, Université de Moncton, Moncton, NB, Canada
Abstract
We suggest methods of extracting POT data from daily discharge records and presenting them in an informative manner; additional work is being done on how to make goodness-of-fit tests for distributions such as the generalized Pareto, and how to construct confidence intervals for flood quantiles calculated by the POT approach.

Table 2. FLOODS PERCENTILE (The average number of floods per year has been fixed at 1.5
The percentile chosen is the maximum one for which the corresponding number of floods still verages 1.5 events or more per year of data.

Value : $1440(\mathrm{~m} 3 / \mathrm{s})$
Number of years of record $\cdot 8$
Number of floods: 135
Average number of events per year : 1.53

Average number of events pr										
	Date Start	Date End	D	Rise	Fall	Flood Max	Intesity	Date Flod Max	Volume	t.Bet.FL
1	1927-0421	1927-0425	5	3.5	1.5	${ }_{1880}$	40	1927-0424	1440	-
	1927-11-19	1927-11-20	2	0.5	1.5	11870	230	1927-11-19	420	
3	1923.050.4	1928.05-16	13	4.5	8.5	2550	1110	1928.0508	8s90	
	1923.05:25	1988.06001		1.5	6.5	2020	580	${ }_{1928.0585}$	${ }_{3340}$	
-	1929.0430	1929.0.5.02	3	1.5	1.5	1850	410	1929.0.5.01	930	${ }_{33} 3$
	2013.0421	2013.0.23	3	0.5	25	1930	490	2013.0421	1110	${ }_{358}$
132	2013.0426	2013.04.27	2	0.5	1.5	1570	130	2013.0426	190	3
13	2013-05:27	2013-0.5.27	1	0.5	0.5	1540	100	2013.0.5.27	100	${ }^{30}$
134		2014-0+221	5	1.5	3.5	${ }^{2340}$	900	2014.04, 18	1330	${ }^{325}$
135	20140423	2014005.08	16	10.5	5.5	2050	${ }_{610}$	2014005.03	4550	2

Table 3. FLOODS - FILTERED• In this table we deleted all events separated by 6 or less days, keeping the ones with the highest intensity, or in case of same intensity, the ones with the longest duration. Percentile : 97
Number of years of record : 8
Number of years of fecord: 88 Number of retained events : 116 New average number of events per year: 1.32

Table 4. REARRANGEMENT OF THE TABLE FLOODS - FILTERED: In the following table we arrange the table according to the day of occurrence of the flood Juring the year (i.e., according to the column: date.max).

Work in progress:

1) Applying goodness-of-fit tests for the generalized Pareto distribution (GPD) used to model flood intensities
2) Construction of confidence intervals for flood quantiles calculated by the POT approach using a GPD
itl)
(Hing NSERC

