

Stochastic Modeling of Daily Rainfall Process in a Non-Stationary Context

Sarah El Outayek, Ph.D. Candidate
Supervisor: Prof. Van-Thanh-Van Nguyen
McGill University

Project 1-4

NSERC Canadian FloodNet 3rd Annual General Meeting

June 27- 28, 2017

Outline

• **Objective:** Stochastic Modeling of Extreme Rainfall Events

- Methodology: Stochastic Approach: MCME model
 - Results
- Future work:
 - Linking with Climate Variables

• Conclusion

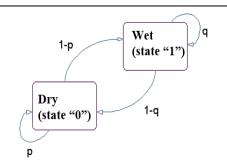
Objective

Stochastic Modeling of Daily Rainfall Processes in a Non-Stationary Context

- Stochastic Approach
 - Another modelling technique besides the statistical approach

- Will take full daily rainfall series as input
 - Will generate accurate synthetic series

METHODOLOGY


Stochastic Approach: MCME model

MCME model

- MCME = Markov Chain Mixed Exponential
- 2 components:
 - 1) Rainfall Occurrence: Markov chain
 - 2) Rainfall Amount: Mixed Exponential Distribution

1st order 2-state Markov Chain

Mixed Exponential Distribution

$$f(x) = \left(\frac{p}{\mu_1}\right)e^{-x/\mu_1} + \left(\frac{1-p}{\mu_2}\right)e^{-x/\mu_2}$$

$$\begin{cases} x > 0 \\ p: mixing \ probability; \ 0$$

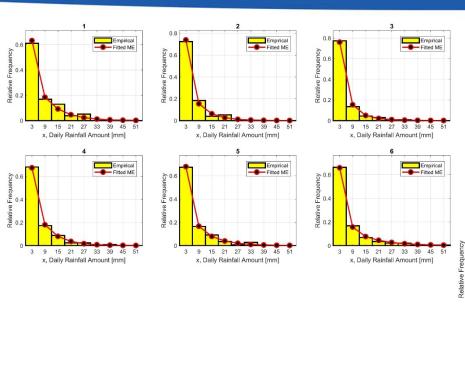
- Seasonality variation accounted by Fourier Series
- The Shuffled Complex Evolution (SCE) technique was used for global optimization of the maximum likelihood

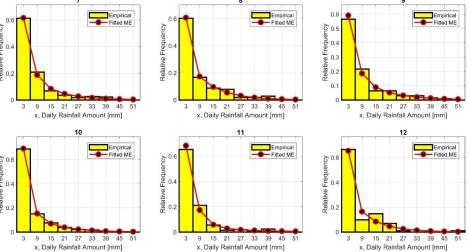
MCME model

MCME model

Similar statistical properties as the observed series

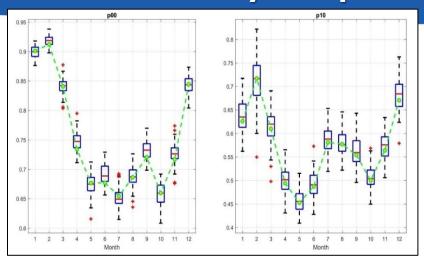
Observed Series

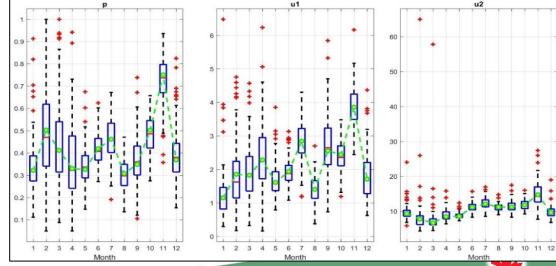

100 Synthetic Series


Results

Monthly histograms of the observed series with the fitted theoretical mixed exponential distribution

Dorval Station


Observed data: 31-year daily data;
1985-2015


Results

Monthly boxplots of parameters variation

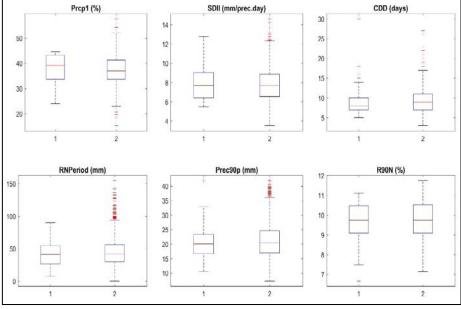
Markov chain parameters

Mixed Exponential parameters

MCME model Model Evaluation

Rainfall Property	Index	Definition	Unit
Frequency	Prcp1	Percentage of wet days (Threshold≥1 mm)	%
Intensity	SDII	Mean precipitation amount at wet days	mm
Extremes	CDD	Maximum number of consecutive dry days	days
	R3Days	Maximum 3-days precipitation total	mm
	Prec90p	90 th percentile of rain day amount	mm
	R90N	% days with precipitation > 90 th percentile	%

(Gachon et al., 2005)



Results Model Evaluation

Winter indices- 1: Observed – 2: Simulated

Summer indices- 1: Observed – 2: Simulated

FUTURE WORK

Linking with Climate Variables

Future Work

One statistical downscaling technique:

Stochastic Weather Generators

- Example: LARS-WG
 - Generates <u>synthetic daily time series</u> of climate variables, statistically identical to the observed series, taking into account <u>Achange</u> between the **baseline period** and the selected **future** period

Future Challenges:

- Linking MCME with Global Climate Models
- Comparing with LARS-WG
- But, how to account for **non-stationarity**??

Conclusion

- Main Objective:
 - New Methodologies for Updating IDF curves
- The stochastic approach is adopted
- The MCME is developed to generate synthetic rainfall series statistically identical to the observed ones
- Including the climate variables in the MCME model will help taking into consideration the climate change

THANK YOU!

Questions?

