2017 FloodNet AGM

Project 1-5: Spatial changes to flood prone areas in urban environments

NSERC CRSNG

Flood

NSERC

2017 update

Andrew Binns, Yiping Guo, Slobodan Simonovic, Zihao Zhang, Tommy Kokas

> 27-28 June 2017 Montreal, Canada

Introductions

Dr. Andrew Binns; Philip de Boer

 School of Engineering, University of Guelph

Dr. Yiping Guo; Zihao Zhang

• Civil Engineering, McMaster University

Dr. Slobodan Simonovic; Tommy Kokas

• Civil and Environmental Engineering, University of Western Ontario

McMaster

University

Overview of Presentation

- 1. Background
- 2. Project 1-5 goal and approach
- 3. Project schedule
- 4. Black Creek subwatershed summary (Kokas)
- 5. City of Edmonton plan (Zhang)

Background

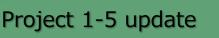
- The effects of changing flows due to climate change pose threats to rivers in dense urban environments (Ashmore and Church 2001)
- Intensifying development in these environments
 - Greater rates of stormwater runoff
 - Increases risk of exposure to extreme precipitation events

Urban Flood Damages

- This results in greater economic losses associated with flood events, including:
 - Basement flooding
 - Damage to infrastructure (e.g., culverts, dams, bridges)
 - Erosion, river instability and loss of land

Project 1-5 Goal

• Objective: to investigate spatial changes to flood prone areas in urban environments as a result of changing environmental and hydrological factors


Environmental	Hydrological
Changes in land-use (i.e., urbanization)	Changing distribution of precipitation
Modification to fluvial systems	Changing magnitude of precipitation events

 Investigate measures to reduce the effect of these changes on the extent of flooding

Project 1-5 Approach

- Assess how urban landscape has been changing in Canadian cities of varying levels of urbanization
 – Toronto (ON), Hamilton (ON), Edmonton (AB)
- Assess how changes in land use (and associated changes in impervious area) have affected the extent of flooding
- Characterize patterns of development more resilient to floods
- Evaluate effectiveness of stormwater management features to mitigate extent of flooding

Historical

land-use

images

Modeling

Comparison

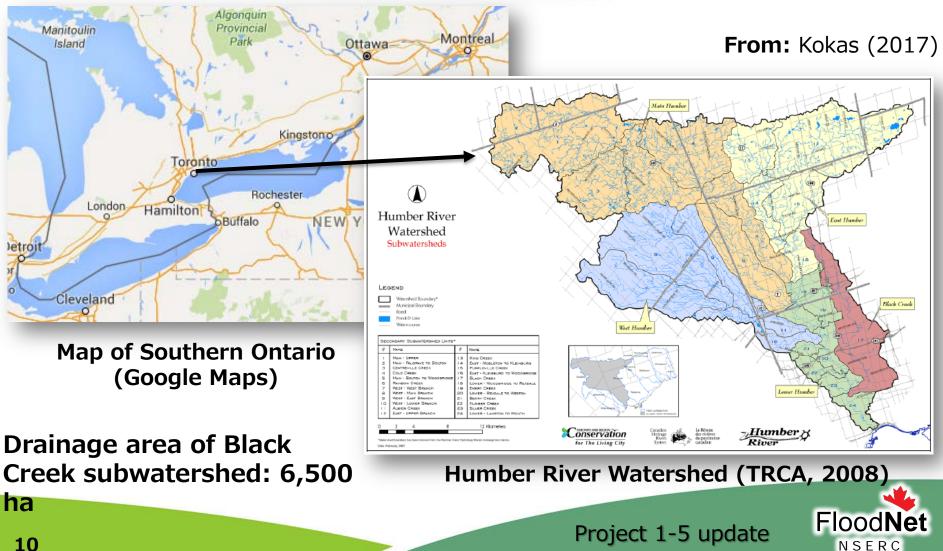
Modelina

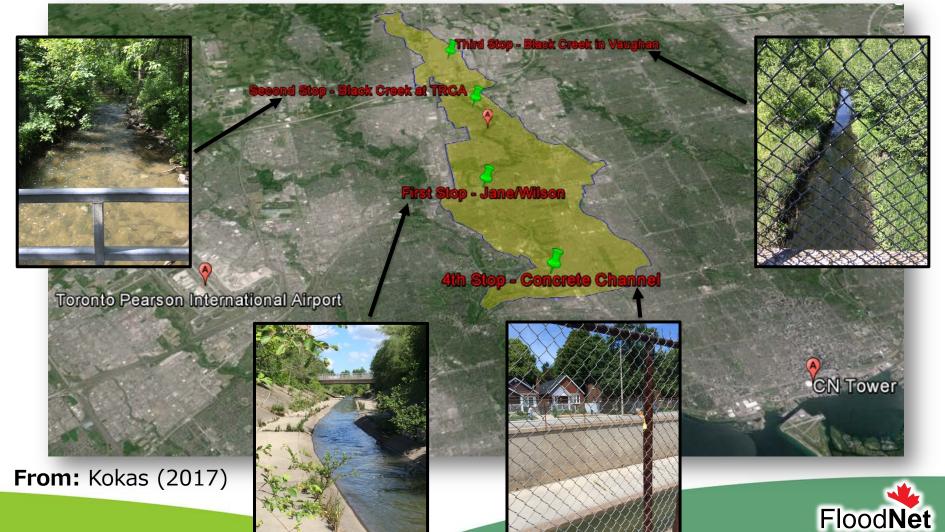
Project 1-5 Schedule and Students

Project	Case study city	2014- 2015	2015- 2016	2016- 2017	2017- 2018	2018- 2019	
MSc #1 (Tommy Kokas)	Toronto	West Gue					
MSc #2 (Zihao Zhang)	Edmonto n			МсМа			
MSc #3 (Philip de Boer)	Hamilton				Guelph / McMaster		

Expected contributions

The outcomes of this project aim to include:


- 1. Understanding relationship between flooding and land-use in urban environments
- 2. Provide guidance for future urban development
- 3. Assist in planning and development of appropriate flood mitigation measures (i.e., stormwater management features)



Black Creek Subwatershed Toronto, ON

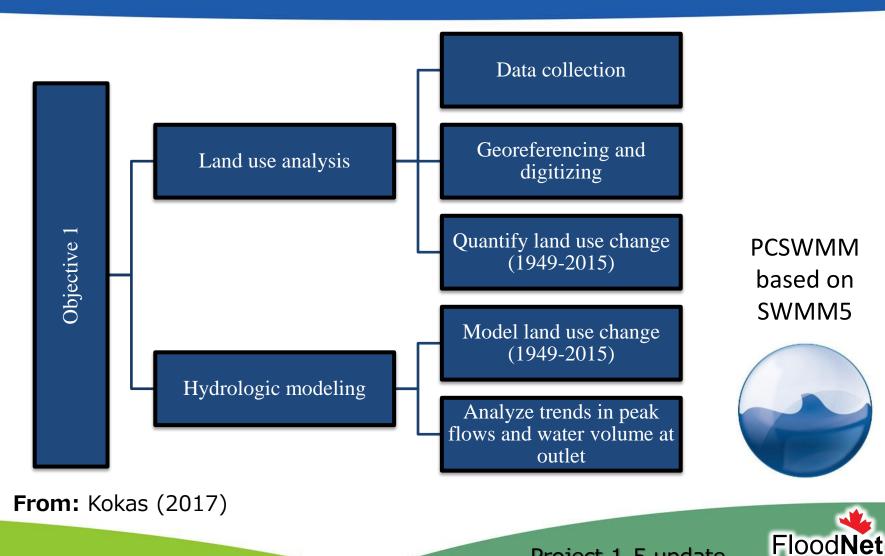
Black Creek Subwatershed Toronto, ON

NSERC

Black Creek Subwatershed Toronto, ON

• Goals:

- Develop greater understanding of relationship between flooding and land-use change
- Evaluate effectiveness of low impact development measures
- Provide recommendations based on investment vs. impact
- Partner: Toronto and Region Conservation
 Au
 Fabio Tonto


Conservation

for The Living City.

Fabio Tonto Wilfred Ho Michael Heralall Harris Switzman

Land Use Analysis

NSERC

Land Use Analysis

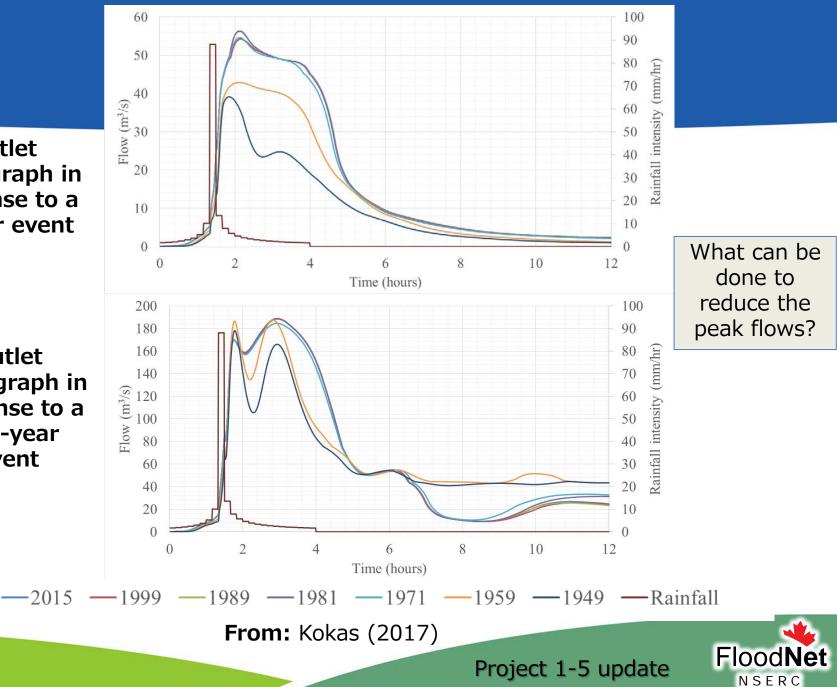
Project 1-5 update

NSERC

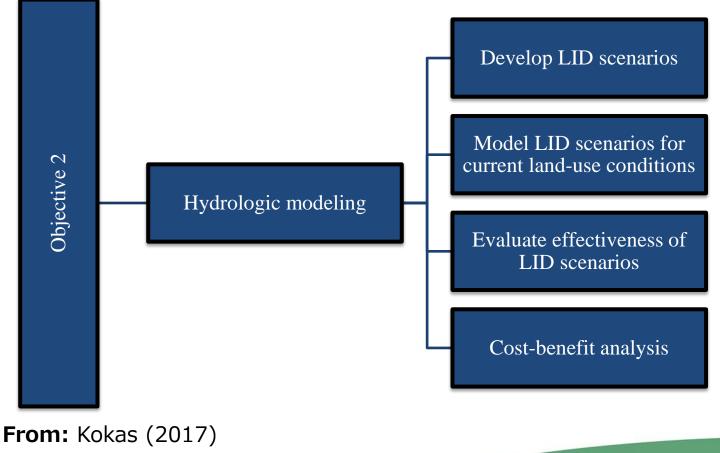
Land Use Analysis

Aerial view of Black Creek subwatershed in Toronto, ON

Southern subcatchments became > 50% impervious in early 1960s


Northern subcatchments became more impervious more recently (1980s)

From: Kokas (2017)



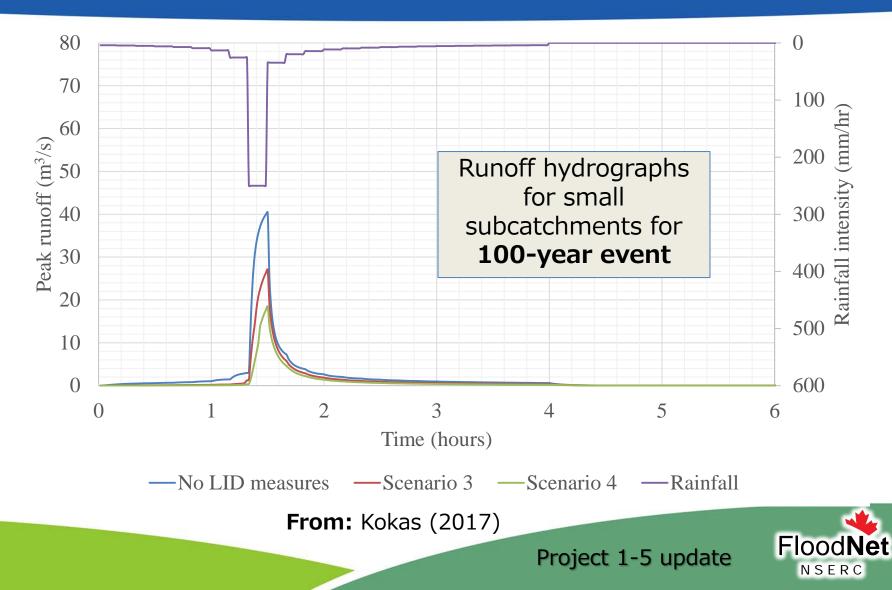
Effectiveness of Low Impact Development (LID) Measures

LID Scenarios

G	C1- #	Sub. # Size of sub.	Area (ha) ⁻	LID (# of units)					Total cost		
Scenario # Sub	Sub. #			RB	BC	RG	IT	RD	CL	VS	(\$)
3	19	Small	61.4	3,250	30	0	57	0	62	77	10,004,055
4	19	Small	61.4	6,500	60	0	114	0	124	154	20,008,110
5	10	Medium	231.1	3,000	15	0	40	0	75	50	10,000,140
6	10	Medium	231.1	6,000	30	0	80	0	150	100	20,000,280
7	5	Large	835.3	3,000	15	0	40	0	75	50	10,000,140
8	5	Large	835.3	6,000	30	0	80	0	150	100	20,000,280

LID units

- RB = rain barrels
- BC = bioretention cell
- RG = rain garden pavement)
- VS = vegetated swale


From: Kokas (2017)

- IT = infiltration trench
- RD = residential driveway
 - CL = commercial lot (permeable

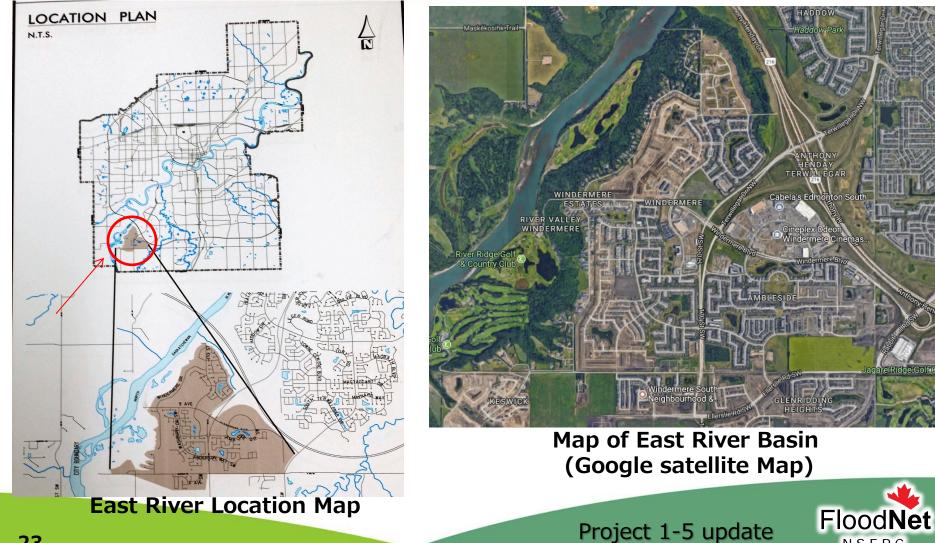
LID Scenarios

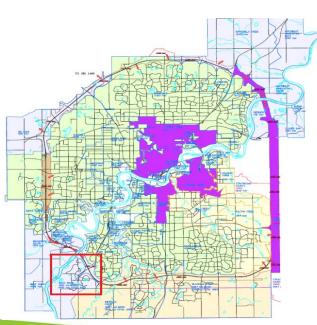
Where to invest? Small subctachment: 12-100 ha Large subctachment: 350-850 ha

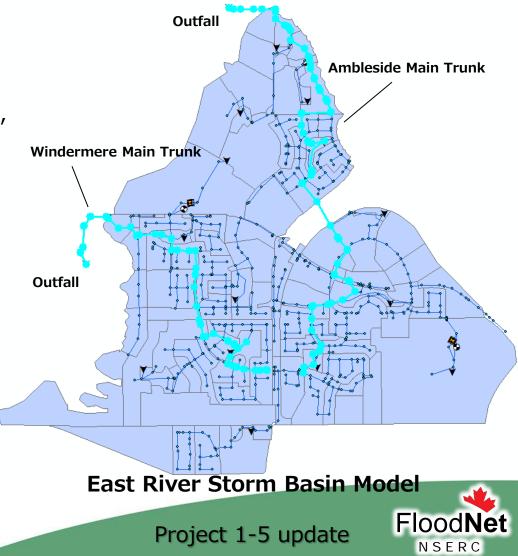
Black Creek Subwatershed: Main Conclusions

- Urban development from 1949 to 2015 transformed Toronto into a densely urbanized and impervious region
- As a result flood hazard has increased due to the changes in land-use and modification to fluvial features
- Southern region of watershed lacks SWM and contains minimal land available for implementation of large SWM measures
- LID features can considerably reduce peak runoff values in small subcatchments, however, negligible improvement in large subcatchments

Study of East River Storm Basin Edmonton, AB


Impact of Urbanization


Location of the Basin


NSERC

East River Storm Basin Model Overview

- 1. Total Gross Area = 1580 ha
- 2. Total Modeled Area = 682.3 ha
- 3. Neighborhoods: Windermere & Ambleside
- Drainage Network: 84 catchments, 730 MH's, 735 pipes, 16 ponds (9 existing & 7 future), 2 outfalls

Project Plan

• Objectives:

- Assess the impacts of urbanization on flood hazard in urban environments
- Rebuild the East River Storm Basin Model for different scenarios
- Evaluate the effectiveness of various stormwater management facilities at reducing flood hazard
- Provide recommendations (new LIDs) for both existing and future land use based on investment vs. impact

Methodology:

- 1. Land use analysis (ArcGIS)
- 2. Hydrologic modeling (MIKE URBAN, FLOOD)
- 3. Cost-benefit analysis

Comparison of Results

East River Storm Basin Study

Black Creek Subwatershed Study

City of Hamilton

Phil de Boer's Master's thesis

Source: Hamilton Conservation Authority

Acknowledgements

Toronto and Region Conservation Authority

- Fabio Tonto
- Wilfred Ho
- Michael Heralall
- Harris Switzman

NSERC Canadian FloodNet

Questions or Discussion

Project 1-5 update

NSERC