

Best-fit Statistical Distribution and Regionalization Techniques for Flood Frequency Analysis in Canada

NSERC Canadian FloodNet Annual General Meeting, 2017 Theme 1, Project 1-6

flood method with region of influence approach (Burn, 1990).

regionalization technique should be applied.

analysis in Canadian climate.

Hydrometric Basin Network (RHBN) stations

- VI. US Water Resources Council (1976). Guidelines for Determining Flood Flow Frequency Bulletin 17b. Washington, D.C.: Hydrol. Comm.

Ziyang Zhang^a, Donald H. Burn^b, Tricia A. Stadnyk^c, Peter F. Rasmussen^d (Deceased)

^aM.Sc. Student, University of Manitoba; ^bProfessor, University of Waterloo; ^cAssociate Professor, University of Manitoba; ^dProfessor, University of Manitoba umzha494@myumanitoba.ca, dhburn@uwaterloo.ca, tricia.stadnyk@umanitoba.ca

3.4 MODIFIED ANDERSON-DARLING GOODNESS-OF-FIT TEST

• It measures the difference between the empirical cumulative distribution function

It is a modified version of Anderson-Darling test that emphasizes on measuring the

discrepancies on the upper tail of the two CDFs which corresponding to flood

The output is a test statistics value and is compared with critical values to decide whether the estimated distribution is "REJECT" or "DO NOT REJECT".

3.5 HOSKING & WALLIS Z-TEST

Measure distance between sample dot and distribution curve in the L-Skewness to

Closer distance between the sample estimated dot and the distribution curve

The output is Z value. -1.64 < Z < 1.64 suggests adequate goodness-of-fit.

3.6 RESULT & CONCLUSION OF TASK I

Table 1: Number of stations which their flood data are feasible to fit and adequate to fit

223	Annua RHBN :	l Maxii Statior	mum ns in total	Instantaneous Peak 204 RHBN Stations in total					
GLO	GEV	PE3	Log10 PE3	GLO	GEV	PE3	Log10 PE3		
220	223	176	211	199	202	195	186		
168	194	197	184	153	175	150	161		
180	192	149	183	171	177	133	172		

3.3 FITTING FEASIBILITY LIMITED BY DISTRIBUTION BOUNDARY

No selected to serve iter than 0

	Needs to be greate
-ε)/α}	if k≠0
	if k = 0
notor & c	· location narameter

- between stations. Flood seasonality (Burn, 1997)

- iii. Proximity (Station LAT, LON)
- vi. iv + v

4.2 PROCEDURES TO DEVELOP POOLING GROUP FOR EACH TARGET SITE

enter the pooling group

4.3 PROCEDURES TO REVISE HETEROGENEOUS POOLING GROUP

- group.
- & BIAS measures.

Table 2: Percentage of homoge

Techniques	Flood	Physiographic	Proximity	Monthly avg.	Monthly avg.	Monthly avg.	
	Seasonality	characteristics		prec.	temp.	prec. + temp.	
H<1	94.1%	91.9%	87.1%	89.8%	87.6%	90.9%	

Table 3: Relative RMSE & BIAS measures between regional & at-site estimate for 19 stations (AMs>90 year)

				BIAS [%]								
т	Flood	Physiographic	Provimity	Monthly	Monthly	Monthly avg.	Flood	Physiographic	Provimity	Monthly	Monthly	Monthly avg.
	seasonality	characteristics	1 IOAIIIIty	avg. prec.	avg. temp.	prec. + temp.	seasonality	characteristics	i i oxiiiii ey	avg. prec.	avg. temp.	prec. + temp.
10	0.041	0.039	0.04	0.041	0.039	0.04	1.73	0.84	1.9	2.22	1.58	1.95
25	0.077	0.07	0.063	0.071	0.068	0.075	2.9	1.27	2.33	3.36	1.79	3.08
50	0.11	0.099	0.085	0.101	0.095	0.107	3.76	1.6	2.52	4.16	1.86	3.91
100	0.147	0.128	0.109	0.133	0.123	0.141	4.64	1.96	2.66	4.95	1.91	4.76
250	0.199	0.169	0.142	0.179	0.162	0.189	5.83	2.51	2.82	6.04	1.99	5.96
500	0.242	0.199	0.168	0.215	0.192	0.227	6.78	3.02	2.96	6.92	2.1	6.97

4. TASK II DELINEATE HOMOGENEOUS POOLING GROUP FOR

REGIONAL FLOOD FREQUENCY ANALYSIS

• Develop homogenous pooling group for each target site (186 target sites in total). • Homogeneous pooling group: flood samples in the group have an identical distribution and differ only in terms of a scale parameter.

• Use and compare 6 different approach to measure the distance of similarity

Physiographic characteristics – selected by stepwise regression model: BASIN_AREA, WatBody_MeanSize, T_AVG_BASIN, ELEV_STD, PPTAVG_BASIN

iv. Monthly average precipitation (based on correlation coefficient)

v. Monthly average temperature (based on correlation coefficient)

4.4 RESULT AND CONCLUSION OF TASK II

• The key that effectively develops homogeneous pooling groups is less dependent on the characteristics used to measure flood similarity, but relies more on the regionalization process; particularly the procedure to revise a heterogeneous pooling

All regionalization approaches yield similar performance in terms of relatively RMSE

9 prairie stations could not form homogeneous pooling groups.

eneous pooling gr	oup formed	by each tec	hniques in a	total of 186 sta	tions
Physiographic		Monthly ave	Monthly ave	Monthly avg.	