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1. Abstract

We recommend some methods of discrimination between statistical
distributions used In hydro meteorological frequency modeling. The
discriminations considered are between: Generalized Pareto (GP) and
Kappa (KAP), Gumbel and some alternative frequency models, and
model pairs belonging to the group {generalized extreme value (GEV),
Pearson type 3 (P3), generalized logistic (GLO)}. Four discrimination
methods are compared by Monte Carlo simulation in terms of their
discrimination power and discrimination bias. These methods are: the
ratio of maximized likelihood statistic (RML), the Anderson Darling
statistic (AD) and the last two are based on a sample transformation to
normality followed by the application of the Shapiro-Wilk statistic
(TN.SW) and the Probabillity plot correlation coefficient statistic
(TN.PPCC)

2. Introduction

The identification of a statistical distribution to model the frequency of
occurrence of extreme hydro-meteorological events is important In
hydrology. The objective of this study Is to recommend some methods
of discrimination between some statistical distributions used In hydro-
meteorological frequency modeling. We will propose some
discrimination procedures, justify their selection and then test and
compare them.

3. Methods and Results
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Fig. 1 Probability of correct selection (%) for sample sizes n = 2000 by
the three test statistics when GP Is the true sampled distribution (left) and
when KAP is the true sampled distribution (right).
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Fig. 2 Probability of correct selection (%) using the AD statistic
when GP is the true sampled distribution (left) and when KAP
IS the true sampled distribution (right).
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Fig. 3 Probability of correct selection (%) using the RML statistic
when GP Is the true sampled distribution (left) and when KAP Is
the true sampled distribution (right).
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Fig. 4 Probability of correct selection (%) using the TN.SW
statistic when GP is the true sampled distribution (left) and when
KAP Is the true sampled distribution (right).
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Fig. 5 Boxplot of PCS.mean and PCS abs diff. The discrimination Is
between Gumbel and some alternative frequency models
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Fig. 6 PCS means (3A) and absolute differences (3B), for
comparing TN.PPCC and TN.SW. The discrimination is
between GEV and GLO
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Fig. 7 PCS means (4A) and absolute differences (4B), for
comparing TN.PPCC and TN.SW. The discrimination Is
between P3 and GLO

(=3 o 12 15 18
cC
—- — the
= 20
--
| 10
-—- ’-—- -
i.-r" - o
3 &
Increase in

‘ popu ation skew - -->

‘}“’“—a’/_/*/\-ib/ o

Thea input vector # (1 to 18)

Fig. 8 PCS means (5A) and absolute differences (5B), for
comparing TN.PPCC and TN.SW. The discrimination Is
between P3 and GEV

4. Conclusions

* To discriminate between the KAP and GP models, use of the
AD statistic leads to bias for one model over the other.

 The TN.SW and TN.PPCC statistic proved to be the most
advantageous, they would be recommendable In practice for
this reason.

* We found a difficulty In discriminating between P3 and
GEV models.
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