

Theme 1-6: Development of new flood estimation manual for Canada.

Martin Durocher and Donald Burn

WATERLOO

Reference Manual

- Other countries
 - Australian Rainfall runoff (http://arr.ga.gov.au/arr-guideline)

 - Flood Estimation Handbook (UK)
 - Bulletin 17B (USA)
- Manual
 - Online documentation* (+pdf)
 - Multiple author contributions
 - Update and feedback
- Content
 - Detailed description of the methodologies with references
 - Adaptation of the methodologies for Canada
 - Floods and extreme rainfalls
 - Regional and ungauged analysis

Prev

Chapter 2. At-Site Flood Frequency Ana

George Kuczera, Stewart Franks

Chapter Status	
Date last updated	06/07/16
Content	Advanced draft
General	Subject to industry feedback

2.1. Introduction

Flood Frequency Analysis (FFA) refers to procedures that use re then be used to perform risk-based design and flood risk asses

The primary purpose of this chapter is to present guidelines or judgments, this chapter describes the key conceptual foundati get maximum benefit. In addition, a number of worked examp most practitioners will use software written by others to implei applications.

2.2. Conceptual Framework

Software

- Software
 - Desktop application
 - Webpage*
 - R-package* vs MATLAB
- Basic users
 - Manual analysis with simple GUI
 - Access database (analyzed sites)
 - Input of their data
 - Station Name
 - Flow data, Coordinates
 - Descriptors: Area, slope, Stream length, waterbody, elevation, coordinate, Mean annual precipitation.
- Advanced users
 - Modification and improvement of the guidelines
 - Batch analysis and scripting

- Available on Github
 - Free code hosting service
 - Easy consultation and collaboration.

Ungauged sites analysis

- Objective: Prediction of flood risks based on catchment descriptors
- Initial considerations
 - Guidelines from the other themes 1.X
 - Choice of the distributions
 - Quality and nature of the output
 - Adaption to the diversity of Canada
 - Literature review
- Methodology
 - Region of influence (ROI)
 - Generalized least-squares (GLS)
 - Copula framework (intersite)

Region of influence

- Data
 - 1346 sites (RFA)
 - 918 with descriptors
- Calibration of the ROI
 - Metric
 - Geographical
 - Euclidean distance
 - Number of donors
 - Independent
 - Fixed by provinces
 - Descriptors
 - Equations by provinces
 - Shrinking methods

Generalized least squares

- Better representation of the uncertainty
- GLS Regression
 - Regression equation

$$\log(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta} + \underbrace{\mathbf{\eta}}_{\omega = \text{Total}} \overset{\text{model sample}}{=}, \quad \Lambda = \sigma_{\eta}^{2}\mathbf{I} + \underbrace{\boldsymbol{\Sigma}}_{\omega = \sigma_{\eta}^{2}} = \sigma_{\eta}^{2}G(\sigma_{\eta}^{2})$$

- Estimation by iterative least squares
- Input from regional frequency analysis
 - Minimizing sampling error
- Flood quantiles model
 - Mixing families of distributions
- Other possibilities
 - Input from at-site analysis or combine information
 - Quantile-based vs Parameter-based

Sampling covariance

- Intersite correlation
 - Affect uncertainty in regional analysis
 - Effect of large meteorological cells
 - Widespread snowmelt
 - Nesting sites
- Copula framework
 - Multivariate copula

$$F(\mathbf{x}) = C \begin{pmatrix} F^{-1}(\mathbf{x}), \Box, F^{-1}(\mathbf{x}) \\ \Box \Box \Box \\ U_1 \end{pmatrix}, \Box, F^{-1}(\mathbf{x}) \\ U_d \end{pmatrix}, \quad \text{with} \quad \mathbf{x} = (x_1, \Box, x_d) \\ U_i \in [0, 1]$$

- Estimation independent of the marginals.
- Nonparametric modelling of the pairwise dependence

- Monte-Carlo Simulations
 - 1. Simulate from the Normal copula
 - 2. Compute the output variables
 - Repeating steps 1-2, several times
 - Evaluating the covariance matrix

Validation of the Normal copula

- Multivariate Normal distribution
 - Closed analytical form
 - Easy to simulate
- Data: 32 sites

 Dist < 40 km, rho > 0.7, n > 50 years
- Alternative copula
 - Extreme: Husler-Reiss, Gumbel
 - Asymmetrical : Clayton
 - Tail dep.: T-copula
- GOF tests are inconclusive
- Normal copula generally the best fit

Location of close sites in Canada

% of site where AIC better than Normal copula

Т		HR	GUMB	CLT
	16	19	16	16

Spearman rho

- Empirical vs model-based
- Additive models

 $g(\rho_{ij}) = f_1(h_{ij}) + f_2(\overline{A}_{ij}) + f(\overline{x}_{ij}, \overline{y}_{ij}) + \varepsilon_{ij}$

- Fisher z-transform
- Thin plate splines
- Variance explained 50%
- Anisotropy
- Pairs < 1000km</p>
- Relation with correlation coefficients

$$\theta_{ij} = 2\sin\left(\frac{\pi}{6}\rho_{ij}\right)$$

 Correction for positive-definite matrix

Future work

- Software and manual
 - Determining the medium
 - Github: R-package
 - mduroche@uwaterloo.ca
- Ungauged analysis
 - Providing guidelines for calibrating the ROI/GLS model
 - Simplified intersite model
 - Alternative predictive methods

